

Improving Mother's Nutrition to Impact Health of Future Generations – Latest Evidence on Benefits of Maternal Milk Supplementation on Birth Outcomes & Breastfeeding Success

Dr LOW YEN LING

Director, Research & Development
Abbott Nutrition R&D Asia-Pacific Center

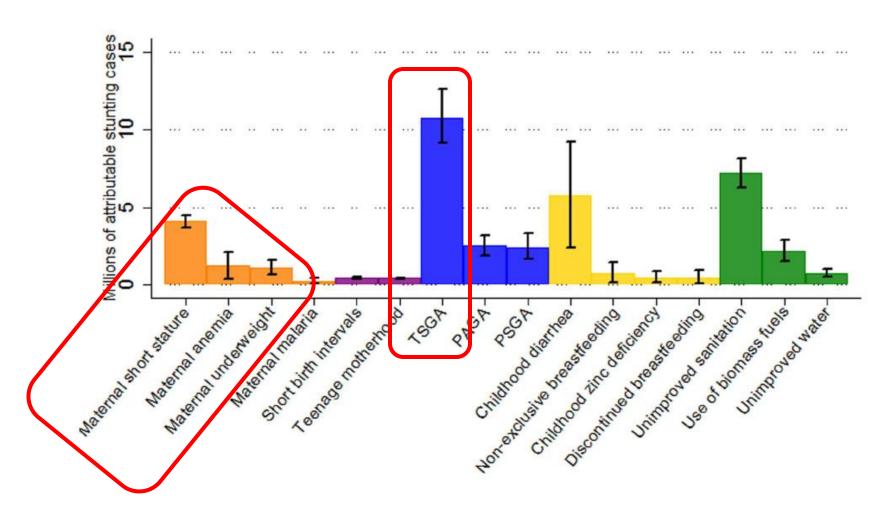
Outline

- Importance of maternal nutrition for good headstart to life
- International evidence
 - Role of maternal nutritional supplementation
- Local evidence
 - First ever maternal milk supplementation study in Vietnam

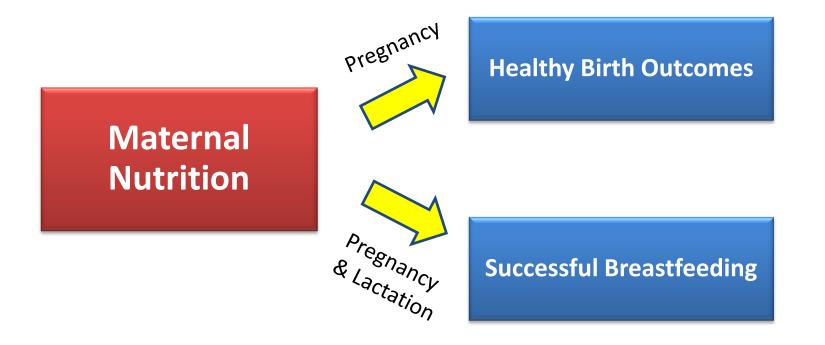
Outline

- Importance of maternal nutrition for good headstart to life
- International evidence
 - > Role of maternal nutritional supplementation
- Local evidence
 - > First ever maternal milk supplementation study in Vietnam

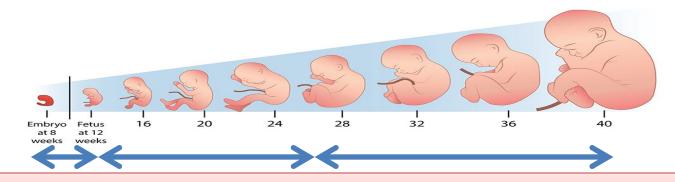
Study from Harvard School of Public Health, USA


Published: November 1, 2016

RESEARCH ARTICLE


Risk Factors for Childhood Stunting in 137 Developing Countries: A Comparative Risk Assessment Analysis at Global, Regional, and Country Levels

Goodarz Danaei^{1,2}*, Kathryn G. Andrews¹, Christopher R. Sudfeld¹, Günther Fink¹, Dana Charles McCoy³, Evan Peet^{1,4}, Ayesha Sania¹, Mary C. Smith Fawzi⁵, Majid Ezzati^{6,7}, Wafaie W. Fawzi^{1,2,8}


Term, small for gestational age (TSGA) is the leading risk factor for stunting worldwide

Maternal nutrition - Key to healthy birth outcomes and successful breastfeeding

Optimal nutrition during pregnancy to support normal and healthy fetal development

- Energy: +50 kcal +250 kcal +450 kcal
- Protein: +1 g +10 g +30 g
- Minerals (iron, zinc, calcium & iodine): + 20% to 50% compared with non-pregnant, non-breastfeeding women
- Vitamin (B vitamin, vitamin A, C & D): + 10% to 50% compared with non-pregnant, non-breastfeeding women

Build energy and nutrient store for later breastfeeding

Optimal nutrition during breastfeeding contributes the success of breastfeeding

Requirements during breastfeeding are higher than during pregnancy for most nutrients

First 6 months

Second 6 months

- Energy: +500 kcal (10% higher than in pregnancy)
- Protein: +19 g +13 g
- Minerals (zinc, calcium, iodine): + 8 to 15% compared with pregnant women
- Vitamin (B vitamin, vitamin A, C & E): + 5 to 50% compared with pregnant women

Healthy Birth Outcomes

- Birth weight
- Birth length
- Birth head circumference

Birth outcomes (even within normal range) associated with later IQ in Singapore babies

TABLE 2 Relationship of BL, BW, HC, and GA With Childhood IQ

	All Children, β Coefficient (95% Cl)		Excluding BW $>$ 4 kg, BW $<$ 2.5 kg, GA $<$ 37 wk, HC $>$ 36 cm, HC $<$ 32 cm³, β Coefficient (95% Cl)	
	IQ Score, Model 1 ^b	IQ Score, Model 2 ^c	IQ Score, Model 1 ^b	IQ Score, Model 2 ^c
BL, per 1-cm increase	0.37 (0.14 to 0.61)	0.49 (0.19 to 0.78)	0.44 (0.08 to 0.79)	0.50 (0.12 to 0.87)
Р	.002	.001	.016	.010
BW, per 1-kg increase	1.37 (0.24 to 2.49)	2.19 (0.60 to 3.77)	2.19 (0.04 to 4.34)	2.70 (0.43 to 4.98)
Р	.017	.007	.046	.020
HC, per 1-cm increase	0.42 (0.08 to 0.75)	0.62 (0.21 to 1.04)	0.89 (0.23 to 1.55)	0.96 (0.26 to 1.66)
Р	.015	.003	.009	.008
GA, per 1-wk increasea	0.05 (-0.32 to 0.41)	0.04 (-0.34 to 0.43)	-0.32 (-0.94 to 0.30)	-0.31 (-0.98 to 0.35)
P	.805	.821	.309	.351

^a GA was not adjusted for In these models.

Linear regression model of IQ scores, adjusted for age, gender, ethnicity, school, and mother's education.

Linear regression model of IQ scores, adjusted for age, gender, ethnicity, school, mother's education, BMI, mother's age at birth, mother's and father's smoking, family size, birth order, and GA.

Head circumference associated with different aspects of later IQ

TABLE 2 Differences in IQ at 4 Years of Age According to SDS Increases in Head Growth Variables
Considered Simultaneously, With and Without Adjustment for Parental Factors

Head Growth Variable	Regression Coefficient (95% CI)			
	Not Adjusted for Parental Factors	Adjusted for Parental Factors		
Full-scale IQ				
Head circumference at birth SDS	2.14 (1.02-3.26) ^a	2.41 (1.31-3.50)a		
Conditional head growth				
Between birth and 1 y	2.60 (1.27-3.94)a	1.97 (0.68-3.26)a		
Retween 1 and 4 y	1 59 (—0.20 to 3.37)	0.46 (1.25 to 2.17)		
Verbal IQ				
Head circumference at birth SDS	1.33 (0.23-2.41)a	1.65 (0.59-2.71)a		
Conditional head growth				
Between birth and 1 y	2.57 (1.27-3.86) ^a	2.00 (0.75-3.25)a		
Between 1 and 4 y	1.06 (-0.69 to 2.80)	-0.21 (-1.88 to 1.45)		
Performance IQ				
Head circumference at birth SDS	2.42 (1.26-3.57) ^a	2.52 (1.35-3.69) ^a		
Conditional head growth				
Between birth and 1 y	1.79 (0.41-3.16) ^a	1.42 (0.07-2.76)a		
Between 1 and 4 y	1.83 (-0.01 to 3.68)	0.90 (-0.90 to 2.70)		

Parental factors were parental education, social class, parenting score, duration of breastfeeding, maternal age, history of postnatal depression, and number of older siblings.

 $^{^{}a}P < .05$.

Outline

- Importance of maternal nutrition for good headstart to life
- International evidence
 - > Role of maternal nutritional supplementation
- Local evidence
 - > First ever maternal milk supplementation study in Vietnam

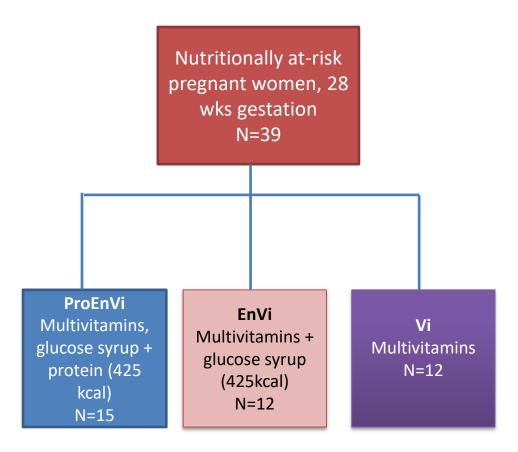
Supplementation with Multiple Micronutrients Intervention Trial (SUMMIT) in Indonesia

Neonatal outcomes

- 14% ↓ in Low Birth Weight
- 11% ↓ in fetal loss & neonatal deaths
- 18% ↓ in 3m infant mortality

Cognition outcomes: 3-5 years

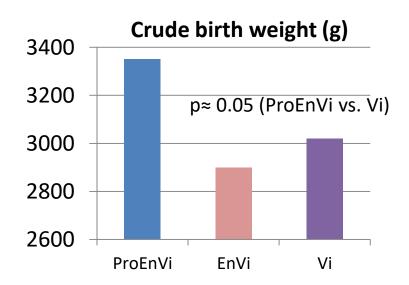
- ↑ motor ability
- ↑ visual attention/ spatial ability

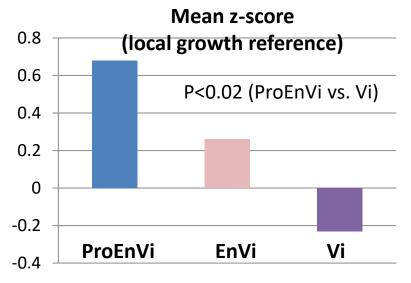

 in children of undernourished mothers

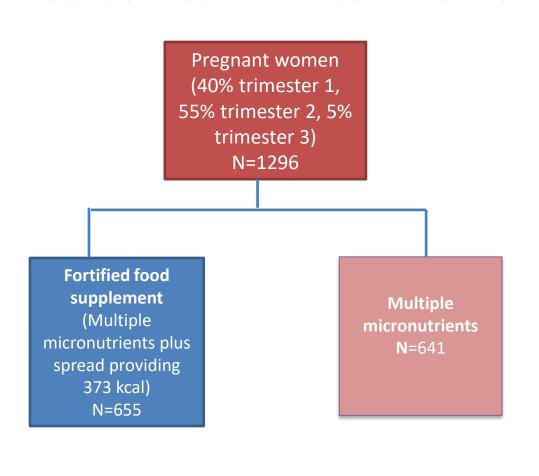
Cognition outcomes: 9-12 years

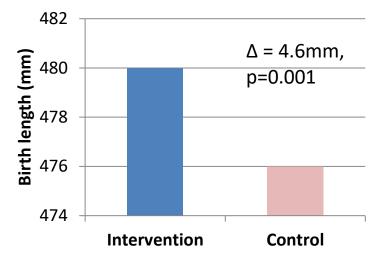
- ↑ procedural memory (equivalent to half year schooling)
- ↑ in 18 out of 21 tests

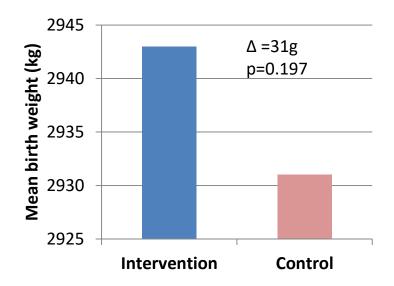
SUMMIT study group, Lancet 2008 Prado et al, Pediatrics 2012 Prado et al, Lancet Global Health 2017 Supplementation of multiple micronutrients is more effective than iron and folic acid alone and has long term benefits on child cognitive development


Protein energy multivitamins supplementation during the last trimester improves birth weight in Asian mothers at nutritional risk who lived in UK

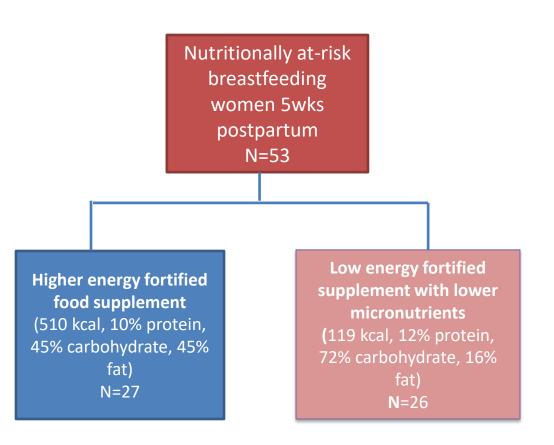


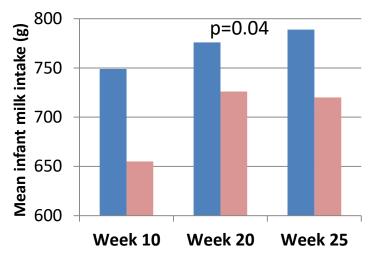

No differences in other growth parameters

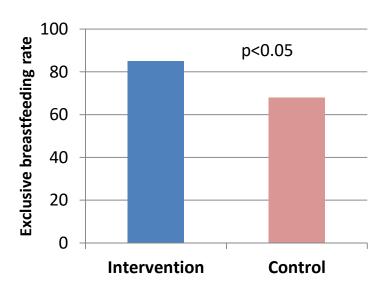

Viegas et al, Clin Res Edu 1982



Impact of fortified food supplement vs. multiple micronutrient supplementation on birth outcomes in African women






Huybregts et al, AJCN 2009

Supplementation of protein, energy and multiple micronutrients is more effective in improving birth outcomes compared with multiple micronutrient supplementation alone

Higher energy food supplementation increases breast milk production in nutritionally at-risk breastfeeding mothers

Maternal nutritional supplementation during breastfeeding helps improve breastfeeding performance

Outline

- Importance of maternal nutrition for good headstart to life
- International evidence
 - > Role of maternal nutritional supplementation
- Local evidence
 - > First ever maternal milk supplementation study in Vietnam

How can a daily continued maternal milk supplementation from pregnancy to breastfeeding in conjunction with lactation support help mothers and babies – New evidence in Vietnamese mothers

The key findings of this study are also mentioned in the Maternal Nutrition Guideline

Collaboration with Vietnam National Institute of Nutrition

Study Objective

To evaluate the effects of a lactation support program consisting of:

- Maternal milk supplementation twice daily
- Pre- and postnatal breastfeeding education and consultation

on birth outcomes and breastfeeding performance in Vietnamese mothers

Study Design

26-29 weeks gestation

Delivery

Week 4

Week 8

Week 12

Postpartum

Vietnamese pregnant women (N=228)

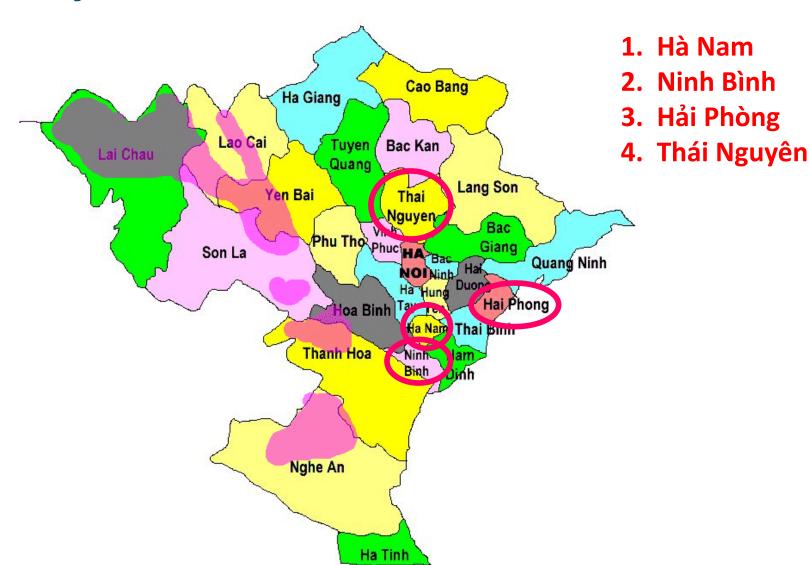
- o 26-29 weeks gestation
- **20-35** y
- o pre-pregnant BMI <25</p>

Intervention N=114

2 servings of maternal milk/ day + Lactation

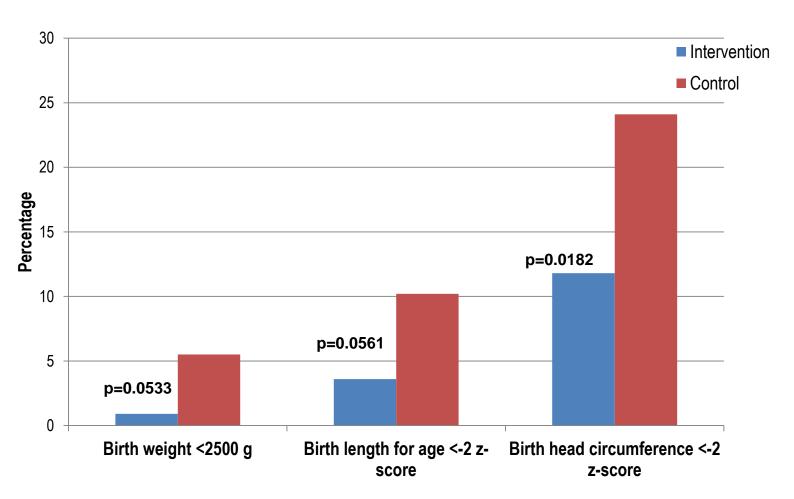
support*

Control N=114


Folic acid &
iron
supplement
+
breastfeeding
advice if
available

- □ Primary outcome: Exclusive breastfeeding rate□ Other outcomes:
 - Infant's breast milk intake
 - Infant's anthropometry
 - Mother's dietary intake and anthropometry

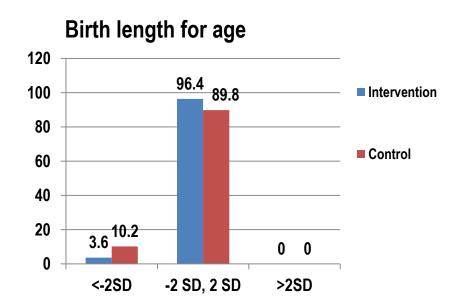
* Lactation support consists of one prenatal BF class, 1 consultant visit within 48 h of delivery, one telephone follow-up at 1 week postpartum and one follow-up at 1 month postpartum


Study Sites

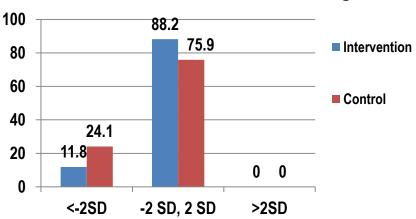
Baseline characteristics

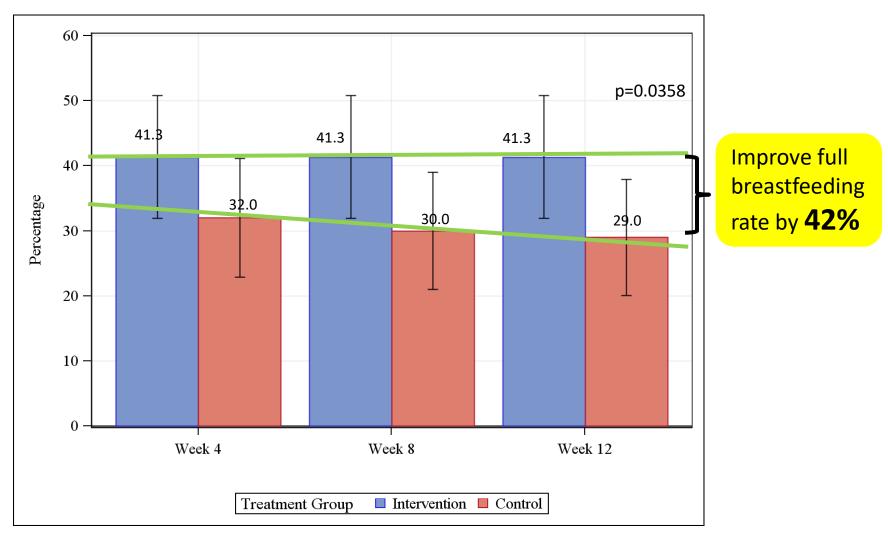

Characteristics	Intervention N=113	Control N=113	p-value
Age (years), mean (SD)	23.9 (2.7)	24.1 (3.0)	0.8142*
Education level, n (%)			0.7081**
Primary	1(0.9)	2(1.8)	
Secondary	27(23.9)	32(28.3)	
High school	43(38.1)	36(31.9)	
Colleague/University	42(37.2)	43(38.1)	
Pre-pregnant BMI (kg/m²), mean (SD)	19.2 (0.2)	19.2 (0.2)	0.8203***
Mid upper arm circumference, mean (SD)	24.1 (1.9)	24.2 (2.4)	0.7471***
Delivery mode, n (%)			0.4872**
Normal delivery	76 (68.5)	80 (72.7)	
C-section	35 (31.5)	30 (27.3)	

Intervention reduces risk of small for gestational age birth outcomes

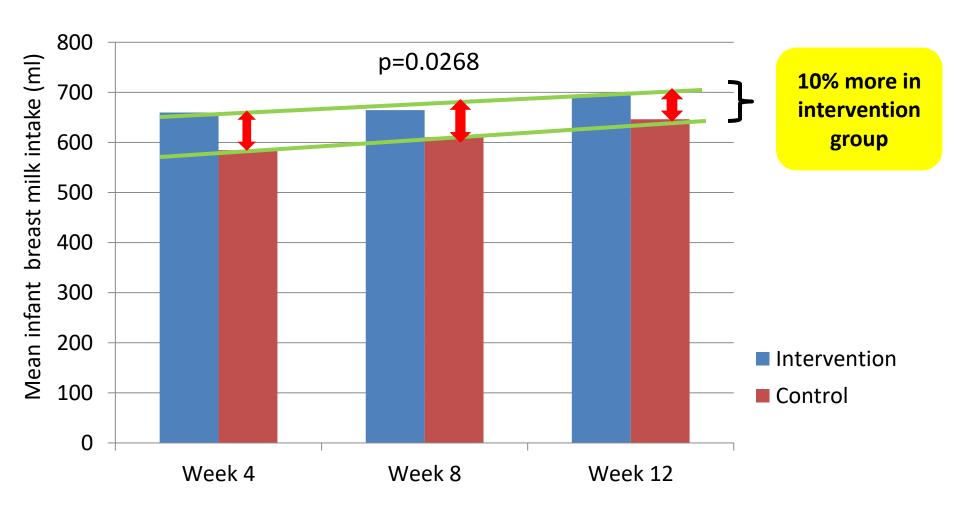


P-value is from Chi-square test

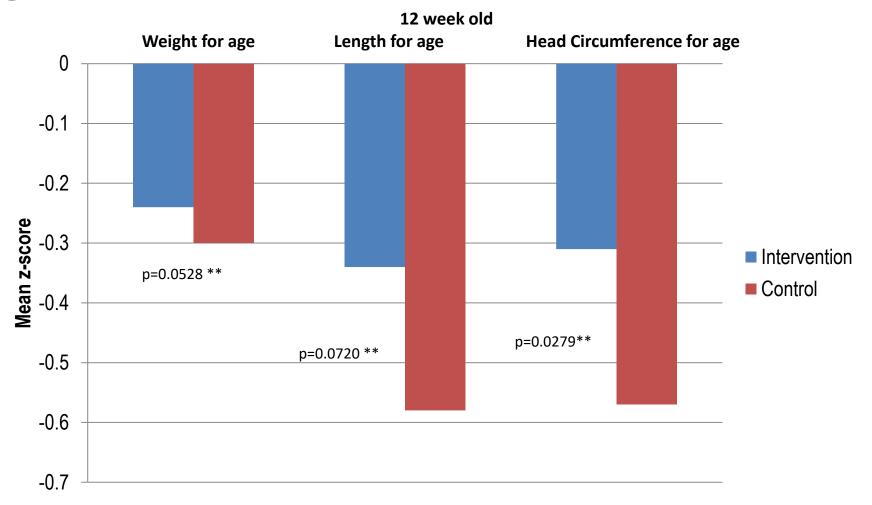

Not too small, not too big - Improved percentage of infants in healthy z-score range



Birth Head Circumference for age

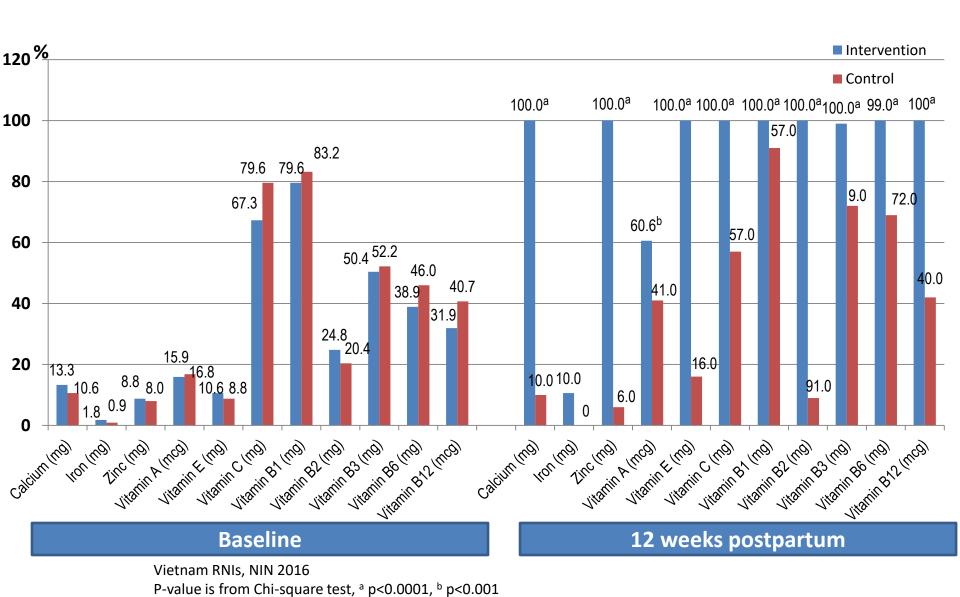


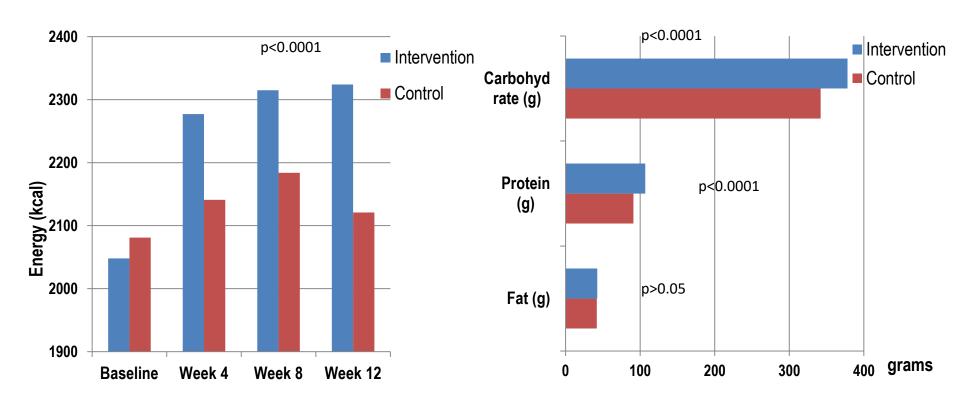
Intervention had significantly higher exclusive breastfeeding rate over 12 weeks postpartum


P-value from GEE analysis, controlling for mother's MUAC, delivery mode, infant gender, study site and visit

10% more breast milk production in half of mothers with lower nutritional status

P-value is from GEE analysis, controlling for MUAC, wealth index score, study site and visit


Intervention babies also had better postnatal growth

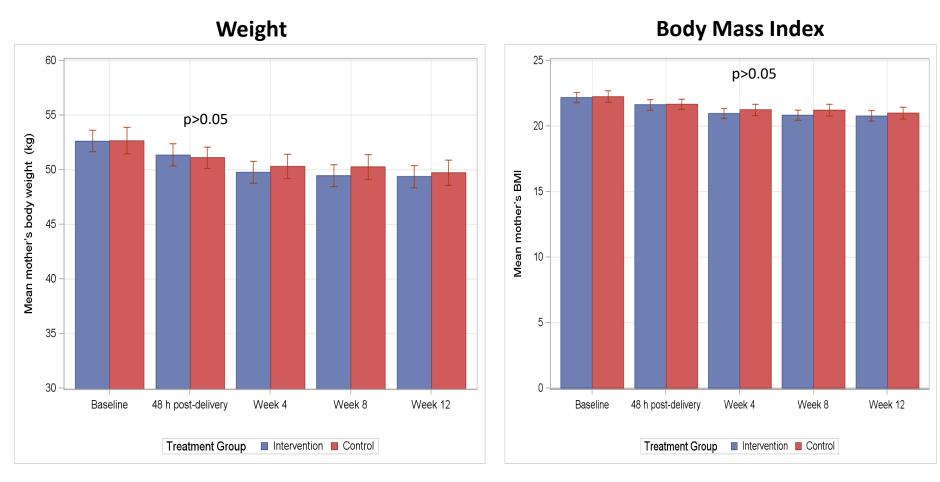

^{*} P-value is from ANCOVA analysis controlling for mother's age, mother's mid arm circumference and infant gender

^{**} P-value is from GEE analysis considering repeated measures of growth indicators at birth, weeks 4, 8 and 12 controlling for mother's mid arm circumference and/or infant gender and/or wealth index score, and/or site and visit

Intervention had significantly higher percentage of mothers with nutritional adequacy of wide range of nutrients

Intervention mothers had significantly higher energy and macronutrient intake

P-value is from repeated measure ANOVA for log transformed energy and protein intake


How does the supplement affect weight gain during pregnancy and weight loss after delivery?

Both groups had similar weight measurements at all time points during pregnancy and post-delivery

P-value is from repeated measure ANCOVA, controlling for baseline energy intake and study site's effect

Summary of key study findings

Maternal milk supplementation as part of a lactation support program is clinically proven to help:

- ✓ Improve birth outcomes and postnatal growth
- ✓ Improve and sustain exclusive breastfeeding
- ✓ Support weight management of mothers during pregnancy and post-delivery

Key considerations when recommending maternal nutrition supplementation

High in key vitamins and minerals

Provide key micronutrients to build up mother's

milk production

I growth &

Balanced prot carbohydrate energy

ional demands lilk production

Very low fat

- Low fat to prevent excessive weight gain of mother
- Contains long chain polyunsaturated fatty acids such as DHA to support fetal development

Conclusions

- Maternal nutrition plays an extremely important role to improve health and development of future generations
- First ever maternal milk supplementation study in Vietnam demonstrated that such supplement is clinically proven to improve birth outcomes and breastfeeding success in Vietnamese moms and babies.

